Given a positive integer n, break it into the sum of at least two positive integers and maximize the product of those integers. Return the maximum product you can get.
For example, given n = 2, return 1 (2 = 1 + 1); given n = 10, return 36 (10 = 3 + 3 + 4).
Note: You may assume that n is not less than 2 and not larger than 58.
Hint:
- There is a simple O(n) solution to this problem.
- You may check the breaking results of n ranging from 7 to 10 to discover the regularities.
Credits:
Special thanks to for adding this problem and creating all test cases.【题目分析】
给定一个数n,把这个数划分成至少两个数的和,然后求出划分后的数的乘积的最大值。
【思路】
如果是划分成两个数,那么我们知道是当这两个数最接近的时候乘积最大。如果时划分成多个数呢?我们的几个发现如下:
1. 在所有的数中,只有2和3划分后的乘积会减小,比如划分2后的乘积是1,划分3的最大乘积是2。
2. 大于3的数划分后的数的乘积会比之前大或者相等。
结论:把一个数划分为尽可能多的3,如果正好划分完,则返回这些3的乘积,如果余2,则返回这些3与2的乘积,如果余1,则取出一个3构成4,然后返回这些数的乘积。
【java代码】
1 public class Solution { 2 public int integerBreak(int n) { 3 if(n == 2) return 1; 4 if(n == 3) return 2; 5 6 int count = n / 3; 7 int rest = n % 3; 8 9 if(rest == 0) return (int)Math.pow(3,count);10 else if(rest == 1) return 4*(int)Math.pow(3, count-1);11 else return 2*(int)Math.pow(3, count);12 }13 }